• High Reynolds number channel flow with polymer additives.

    First high-Reynolds number simulation of polymer drag reduction

    Polymer addition in a turbulent flow is the most effective drag reduction strategy available for liquid flows. Polymers are for instance used in the Trans-Alaskan Pipeline to reduce the energy required to move crude oil from the fields to refineries. Using numerical methods that capture the small scale dynamics of polymer dynamics and parallel algorithms, we study polymer drag reductions at larger Reynolds numbers than previously simulated: Re_b=11,000 (based on bulk), Re_\tau=600 (based on viscous scales). These simulations enable us and our collaborators to further the understanding of the mechanisms of polymer drag reductions toward the derivation of predictive theory and models.

  • Contours of fluctuations of pressure in a 2D natural convection flow with polymer additive

    Elastic instabilities in 2D natural convection flow

    The effects of polymer additives in convection flows are anticipated to provide a new approach to the control of heat transfer. We conduct fundamental numerical simulations of natural convection flows in the presence of polymers to investigate the interactions between polymer dynamics and convection cells. This contour plot shows the existence of horizontal elastic instabilities emerging from the boundary layers of convection cells and propagating within the core of convection cells, and circular elastic instabilities in the plumes of convection cells. The identification of elastic instabilities is critical to the understanding of chaotic behavior observed in natural convection flows with polymer additives.

  • Vortices in a Kolmogorov flow forced at two different wavelengths

    Fundamental turbulence research

    Turbulence is one of the remaining great challenges of physics. We use high-fidelity numerical techniques to simulate a large variety of flows to study the structure and predictability of turbulence. The figure shows vortices in a Kolmogorov flow forced at two wavenumbers. This fundamental study has highlighted the asymptotic behavior of turbulent dissipation.

  • Nano fluid ball bearing

    Biomimetic lubrication

    Using molecular dynamics, we study novel approaches to lubrication in human joints and for engineering applications based on intermolecular and surface forces.

  • Shell model of prothrombinase

    Simulation of the blood coagulation under flow

    We work with Prof. Ken Mann to implement Prof. Mann's biochemistry models of the blood coagulation cascade in our flow simulation. This is a quintessential multiscale problem where as little as 2nM of thrombin (a small molecule) may create a deadly blood clot in an artery. Blood is also a particulate flows with a complex rheology, which adds to the modeling challenge. We use numerical techniques and knowledge gained from turbulence simulations, ablation research toward the development of a comprehensive model of the biochemistry of blood coagulation in physiological flows.

Latest News

Elasto Inertial Turbulence is 2D!

When alone in the ability to simulate turbulence in 2D straight channel flows at Reynolds numbers as low as 10,… more

Third paper on Elasto-Inertial Turbulence

Third paper on Elasto-Inertial Turbulence

In our effort to explore the uncharted dynamics of EIT (elasto-inertial turbulence), my dear friends Vincent Terrapon, Julio Soria and myself… more

Discovery of Elasto-Inertial Turbulence via Synergistic Experimental/Numerical Efforts

We did it! We abused Skype and filled our mailboxes with enormous threads of emails for a year, and now… more